Staff Scheduling with Particle Swarm Optimisation and Evolution Strategies
نویسندگان
چکیده
The current paper uses a scenario from logistics to show that modern heuristics, and in particular particle swarm optimization (PSO) can significantly add to the improvement of staff scheduling in practice. Rapid, sub-daily planning, which is the focus of our research offers considerable productivity reserves for companies but also creates complex challenges for the planning software.
منابع مشابه
A New Solution for the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem based on the Particle Swarm Meta-heuristic
In this paper, we develop a new mathematical model for a cyclic multiple-part type threemachine robotic cell problem. In this robotic cell a robot is used for material handling. The objective is finding a part sequence to minimize the cycle time (i.e.; maximize the throughput) with assumption of known robot movement. The developed model is based on Petri nets and provides a new method to calcul...
متن کاملA comparison of three heuristics on a practical case of sub-daily staff scheduling
Sub-daily personnel planning, which is the focus of our work offers considerable productivity reserves for companies in certain industries, such as logistics, retail and call centres. However, it also creates complex challenges for the planning software. We compare particle swarm optimisation (PSO), the evolution strategy (ES) and a constructive agent-based heuristic on a set of staff schedulin...
متن کاملConstruction resource scheduling with chaotic particle swarm optimisation
The traditional methods such as critical path method (CPM) and linear programming (LP) have difficulty solving more general scheduling problems such as resource constrained scheduling problems. Emerging techniques such as particle swarm optimisation (PSO) have shown advantages in addressing this problem. However, the performance of simple PSO is greatly dependent on its parameters, and bad sele...
متن کاملMulti-objective Particle Swarm Optimisation for Robust Dynamic Scheduling in a Permutation Flow Shop
This paper proposes a multi-objective optimisation model and particle swarm optimisation solution method for the robust dynamic scheduling of permutation flow shop in the presence of uncertainties. The proposed optimisation model for robust scheduling considers utility, stability and robustness measures to generate robust schedules that minimise the effect of different real-time events on the p...
متن کاملA Feature-Based Comparison of Evolutionary Computing Techniques for Constrained Continuous Optimisation
Evolutionary algorithms have been frequently applied to constrained continuous optimisation problems. We carry out feature based comparisons of different types of evolutionary algorithms such as evolution strategies, differential evolution and particle swarm optimisation for constrained continuous optimisation. In our study, we examine how sets of constraints influence the difficulty of obtaini...
متن کامل